
CS193p

Winter 2017

Stanford CS193p
Developing Applications for iOS

Winter 2017

CS193p

Winter 2017

Today
More Swift & the Foundation Framework

What are Optionals really?
Tuples
Range<T>
Data Structures, Methods and Properties
Array<T>, Dictionary<K,V>, String, et. al.
Initialization
AnyObject, introspection and casting (is and as)
UserDefaults
assert

CS193p

Winter 2017

Optional
An Optional is just an enum

In other words …
enum Optional<T> { // the <T> is a generic like as in Array<T>

case none
case some(T)

}

CS193p

Winter 2017

Optional
An Optional is just an enum

In other words …

enum Optional<T> { // the <T> is a generic like as in Array<T>
 case none
 case some(T)
}
let x: String? = nil
… is …
let x = Optional<String>.none

let x: String? = “hello”
… is …
let x = Optional<String>.some(“hello”)

CS193p

Winter 2017

Optional
An Optional is just an enum

In other words …

enum Optional<T> { // the <T> is a generic like as in Array<T>
 case none
 case some(T)
}
let x: String? = nil
… is …

let x = Optional<String>.none

let x: String? = “hello”
… is …

let x = Optional<String>.some(“hello”)

let y = x!
… is …
switch x {

case some(let value): y = value
case none: // raise an exception

}

CS193p

Winter 2017

Optional
An Optional is just an enum

In other words …

enum Optional<T> { // the <T> is a generic like as in Array<T>
 case none
 case some(T)
}
let x: String? = nil
… is …

let x = Optional<String>.none

let x: String? = “hello”
… is …

let x = Optional<String>.some(“hello”)

let y = x!
… is …

switch x {
 case some(let value): y = value
 case none: // raise an exception
}

let x: String? = ...
if let y = x {

// do something with y
}

… is …
switch x {

case .some(let y):
// do something with y

case .none:
break

}

CS193p

Winter 2017

Optional
Optionals can be “chained”
For example, hashValue is a var in String.
What if we wanted to get the hashValue from an Optional String?
And what if that Optional String was, itself, the text of an Optional UILabel?

var display: UILabel? // imagine this is an @IBOutlet without the implicit unwrap !
if let temp1 = display {

if let temp2 = temp1.text {
let x = temp2.hashValue
...

}
}

… with Optional chaining using ? instead of ! to unwrap, this becomes …

if let x = display?.text?.hashValue { ... } // x is an Int
let x = display?.text?.hashValue { ... } // x is an Int?

CS193p

Winter 2017

Optional
There is also an Optional “defaulting” operator ??
What if we want to put a String into a UILabel, but if it’s nil, put “ ” (space) in the UILabel?

let s: String? = ... // might be nil
if s != nil {

display.text = s
} else {

display.text = “ “
}

… can be expressed much more simply this way …

display.text = s ?? “ “

CS193p

Winter 2017

Tuples
What is a tuple?

It is nothing more than a grouping of values.
You can use it anywhere you can use a type.

let x: (String, Int, Double) = (“hello”, 5, 0.85) // the type of x is “a tuple”
let (word, number, value) = x // this names the tuple elements when accessing the tuple
print(word) // prints hello
print(number) // prints 5
print(value) // prints 0.85
… or the tuple elements can be named when the tuple is declared (this is strongly preferred) …

let x: (w: String, i: Int, v: Double) = (“hello”, 5, 0.85)
print(x.w) // prints hello
print(x.i) // prints 5
print(x.v) // prints 0.85
let (wrd, num, val) = x // this is also legal (renames the tuple’s elements on access)

CS193p

Winter 2017

Tuples
Tuples as return values

You can use tuples to return multiple values from a function or method …
func getSize() -> (weight: Double, height: Double) { return (250, 80) }

let x = getSize()
print(“weight is \(x.weight)”) // weight is 250
… or …
print(“height is \(getSize().height)”) // height is 80

CS193p

Winter 2017

Range
Range

A Range in Swift is just two end points.
A Range can represent things like a selection in some text or a portion of an Array.
Range is generic (e.g. Range<T>), but T is restricted (e.g. comparable).
This is sort of a pseudo-representation of Range …

struct Range<T> {
var startIndex: T
var endIndex: T

}

So, for example, a Range<Int> would be good for a range specifying a slice of an Array.
There are other, more capable, Ranges like CountableRange.
A CountableRange contains consecutive values which can be iterated over or indexed into.

CS193p

Winter 2017

Range
Range

There is special syntax for creating a Range.
Either ..< (exclusive of the upper bound) or ... (inclusive of both bounds)
let array = [“a”,”b”,”c”,”d”]
let a = array[2...3] // a will be a slice of the array containing [“c”,”d”]
let b = array[2..<3] // b will be a slice of the array containing [“c”]
let c = array[6...8] // runtime crash (array index out of bounds)
let d = array[4...1] // runtime crash (lower bound must be smaller than upper bound)

A String subrange is not Range<Int> (it’s Range<String.Index>)
let e = “hello”[2..<4] // this != “ll”, in fact, it won’t even compile
let f = “hello”[start..<end] // this is possible; we’ll explain start and end a bit later

CS193p

Winter 2017

Range
Range

If the type of the upper/lower bound is an Int, ..< makes a CountableRange.
(Actually, it depends on whether the upper/lower bound is “strideable by Int” to be precise.)
CountableRange is enumeratable with for in.
For example, this is how you do a C-like for (i = 0; i < 20; i++) loop …
for i in 0..<20 {
}

How about something like for (i = 0.5; i <= 15.25; i += 0.3)?
Floating point numbers don’t stride by Int, they stride by a floating point value.
So 0.5...15.25 is just a Range, not a CountableRange (which is needed for for in).
Luckily, there’s a global function that will create a CountableRange from floating point values!
for i in stride(from: 0.5, through: 15.25, by: 0.3) {
}
The return type of stride is CountableRange (actually ClosedCountableRange in this case).

CS193p

Winter 2017

class ViewController: … {

}
struct CalculatorBrain {

}
enum Op {

}

Classes, Structures and Enumerations
These are the 3 of the 4 fundamental building blocks of data structures in Swift

Similarities
Declaration syntax …

Data Structures in Swift

CS193p

Winter 2017

func doit(argx argi: Type) -> ReturnValue {

}

var storedProperty = <initial value> (not enum)

var computedProperty: Type {
 get {}
 set {}
}

Classes, Structures and Enumerations
These are the 3 of the 4 fundamental building blocks of data structures in Swift

Similarities
Declaration syntax …
Properties and Functions …

Data Structures in Swift

CS193p

Winter 2017

init(arg1x arg1i: Type, arg2x arg2i: Type, …) {

}

Classes, Structures and Enumerations
These are the 3 of the 4 fundamental building blocks of data structures in Swift

Similarities
Declaration syntax …
Properties and Functions …
Initializers (again, not enum) …

Data Structures in Swift

CS193p

Winter 2017

Classes, Structures and Enumerations
These are the 3 of the 4 fundamental building blocks of data structures in Swift

Similarities
Declaration syntax …
Properties and Functions …
Initializers (again, not enum) …

Differences
Inheritance (class only)
Value type (struct, enum) vs. Reference type (class)

Data Structures in Swift

CS193p

Winter 2017

Value (struct and enum)
Copied when passed as an argument to a function
Copied when assigned to a different variable
Immutable if assigned to a variable with let (function parameters are let)
You must note any func that can mutate a struct/enum with the keyword mutating

Reference (class)
Stored in the heap and reference counted (automatically)
Constant pointers to a class (let) still can mutate by calling methods and changing properties
When passed as an argument, does not make a copy (just passing a pointer to same instance)

Choosing which to use?
Already discussed class versus struct in previous lecture (also in your Reading Assignment).
Use of enum is situational (any time you have a type of data with discrete values).

Value vs. Reference

CS193p

Winter 2017

Parameters Names
All parameters to all functions have an internal name and an external name

Methods

func foo(externalFirst first: Int, externalSecond second: Double) {
 var sum = 0.0
 for _ in 0..<first { sum += second }
}

func bar() {
 let result = foo(externalFirst: 123, externalSecond: 5.5)
}

CS193p

Winter 2017

Parameters Names
All parameters to all functions have an internal name and an external name
The internal name is the name of the local variable you use inside the method

Methods

func foo(externalFirst first: Int, externalSecond second: Double) {
 var sum = 0.0
 for _ in 0..<first { sum += second }
}

func bar() {
 let result = foo(externalFirst: 123, externalSecond: 5.5)
}

CS193p

Winter 2017

Parameters Names
All parameters to all functions have an internal name and an external name
The internal name is the name of the local variable you use inside the method
The external name is what callers use when they call the method

Methods

func foo(externalFirst first: Int, externalSecond second: Double) {
 var sum = 0.0
 for _ in 0..<first { sum += second }
}

func bar() {
 let result = foo(externalFirst: 123, externalSecond: 5.5)
}

CS193p

Winter 2017

Parameters Names
All parameters to all functions have an internal name and an external name
The internal name is the name of the local variable you use inside the method
The external name is what callers use when they call the method
You can put _ if you don’t want callers to use an external name at all for a given parameter
This would almost never be done for anything but the first parameter.

Methods

func foo(_ first: Int, externalSecond second: Double) {
 var sum = 0.0
 for _ in 0..<first { sum += second }
}

func bar() {
 let result = foo(123, externalSecond: 5.5)
}

CS193p

Winter 2017

Parameters Names
All parameters to all functions have an internal name and an external name
The internal name is the name of the local variable you use inside the method
The external name is what callers use when they call the method
You can put _ if you don’t want callers to use an external name at all for a given parameter
This would almost never be done for anything but the first parameter.
If you only put one parameter name, it will be both the external and internal name.

Methods

func foo(first: Int, second: Double) {
 var sum = 0.0
 for _ in 0..<first { sum += second }
}

func bar() {
 let result = foo(first: 123, second: 5.5)
}

CS193p

Winter 2017

You can override methods/properties from your superclass
Precede your func or var with the keyword override
A method can be marked final which will prevent subclasses from being able to override
Entire classes can also be marked final

Methods

CS193p

Winter 2017

Both types and instances can have methods/properties
Type methods and properties are denoted with the keyword static.
For example, the struct Double has a number of vars and funcs on its type.
These are not methods or vars you access on an instance of a Double (e.g. on 53.2).
Instead, you access them by referencing the Double type itself.
static func abs(d: Double) -> Double { if d < 0 { return -d } else { return d } }
static var pi: Double { return 3.1415926 }

let d = Double.pi // d = 3.1415926
let d = Double.abs(-324.44) // d = 324.44

let x: Double = 23.85
let e = x.pi // no! pi is not an instance var
let e = x.abs(-22.5) // no! abs is not an instance method

Methods

CS193p

Winter 2017

Property Observers
You can observe changes to any property with willSet and didSet
Will also be invoked if you mutate a struct (e.g. add something to a Dictionary)
One very common thing to do in an observer in a Controller is to update the user-interface

var someStoredProperty: Int = 42 {
willSet { newValue is the new value }
didSet { oldValue is the old value }

}

override var inheritedProperty: String {
willSet { newValue is the new value }
didSet { oldValue is the old value }

}

Properties

var operations: Dictionary<String, Operation> = [...] {
willSet { will be executed if an operation is added/removed }
didSet { will be executed if an operation is added/removed }

}

CS193p

Winter 2017

Lazy Initialization
A lazy property does not get initialized until someone accesses it
You can allocate an object, execute a closure, or call a method if you want

This still satisfies the “you must initialize all of your properties” rule
Things initialized this way can’t be constants (i.e., var ok, let not okay)
This can be used to get around some initialization dependency conundrums

lazy var brain = CalculatorBrain() // nice if CalculatorBrain used lots of resources

lazy var someProperty: Type = {
// construct the value of someProperty here
return <the constructed value>

}()

lazy var myProperty = self.initializeMyProperty()

Properties

CS193p

Winter 2017

Array
Array
var a = Array<String>()
… is the same as …
var a = [String]() // this appears to be winning the battle of “preferred”

let animals = [“Giraffe”, “Cow”, “Doggie”, “Bird”] // inferred to be Array<String>

// enumerating an Array (it’s a “sequence” just like a CountableRange is)
for animal in animals {

print(animal)
}

// won’t compile, animals is immutable (because of let)
// crash (array index out of bounds)

animals.append(“Ostrich”)
let animal = animals[4]

CS193p

Winter 2017

Array
Interesting Array<T> methods which take closures

This one creates a new array with any “undesirables” filtered out
The function passed as the argument returns false if an element is undesirable
filter(includeElement: (T) -> Bool) -> [T]
let bigNumbers = [2,47,118,5,9].filter({ $0 > 20 }) // bigNumbers = [47, 118]

Create a new array by transforming each element to something different
The thing it is transformed to can be of a different type than what is in the Array
map(transform: (T) -> U) -> [U]
let stringified: [String] = [1,2,3].map { String($0) } // [“1”,”2”,”3”]

Reduce an entire array to a single value
reduce(initial: U, combine: (U, T) -> U) -> U
let sum: Int = [1,2,3].reduce(0) { $0 + $1 } // adds up the numbers in the Array
let sum = [1,2,3].reduce(0, +) // same thing because + is just a function in Swift

CS193p

Winter 2017

Dictionary
Dictionary
var pac12teamRankings = Dictionary<String,Int>()
… is the same as …
var pac12teamRankings = [String:Int]()

pac12teamRankings = [”Stanford”:1, ”USC”:11]
let ranking = pac12teamRankings[“Ohio State”] // ranking is an Int? (would be nil)
pac12teamRankings[“Cal”] = 12

// use a tuple with for-in to enumerate a Dictionary
for (key, value) in pac12teamRankings {

print(“Team \(key) is ranked number \(value)”)
}

CS193p

Winter 2017

String
The characters in a String

A String is made up of Unicodes, but there’s also the concept of a Character.
A Character is what a human would perceive to be a single lexical character.
This is true even if it is made up of multiple Unicodes.
For example, café might be 5 Unicodes (the accent might be separate), but it’s 4 Characters.

You can access any character (of type Character) in a String using [] notation.
But the indexes inside the [] are not Int, they are a type called String.Index.
let s: String = “hello” // hmm, what if we basically wanted s[0] (i.e. the “h”)?
let firstIndex: String.Index = s.startIndex // note that firstIndex’s type is not an Int
let firstChar: Character = s[firstIndex] // firstChar = the Character h
let secondIndex: String.Index = s.index(after: firstIndex)
let secondChar: Character = s[secondIndex] // secondChar = e
let fifthChar: Character = s[s.index(firstIndex, offsetBy: 4)] // fifthChar = o
let substring = s[firstIndex...secondIndex] // substring = “he”

CS193p

Winter 2017

String
The characters in a String

Even though String is indexable (using []), it’s not a collection or a sequence (like an Array).
Only sequences and collections can do things like for in or index(of:).
Luckily, the characters var in String returns a collection of the String’s Characters.

With it, you can do things like …

for c: Character in s.characters { } // iterate through all Characters in s

let count = s.characters.count // how many Characters in s?

let firstSpace: String.Index = s.characters.index(of: “ “)
// a String.Index into the String’s characters matches a String.Index into the String

CS193p

Winter 2017

String
Note that String is a value type (it’s a struct)

So whether you can modify its characters depends on var versus let.
let hello = “hello” // immutable String
var greeting = hello // mutable String
hello += “ there” // this is illegal because hello is immutable
greeting += “ there” // greeting, however, is a var and thus is mutable
print(greeting) // “hello there”
print(hello) // “hello”

Of course you can manipulate Strings in much more complicated ways than appending …
if let firstSpace = greeting.characters.index(of: “ “) {

// insert(contentsOf:at:) inserts a collection of Characters at the specified index
greeting.insert(contentsOf: “ you”.characters, at: firstSpace)

}
print(greeting) // “hello you there”

CS193p

Winter 2017

String
Other String Methods
var endIndex: String.Index // this is never a valid index into the String

func hasPrefix(String) -> Bool
func hasSuffix(String) -> Bool

var localizedCapitalized/Lowercase/Uppercase: String

func replaceSubrange(Range<String.Index>, with: String)
e.g., s.replaceSubrange(s.startIndex..<s.endIndex, with: “new contents”)

func components(separatedBy: String) -> [String]
e.g., let array = “1,2,3”.components(separatedBy: “,”) // array = [“1”,”2”,”3”]

And much, much more. Check out the documentation.

CS193p

Winter 2017

Other Classes
NSObject

Base class for all Objective-C classes
Some advanced features will require you to subclass from NSObject (and it can’t hurt to do so)

NSNumber
Generic number-holding class (i.e., reference type)
let n = NSNumber(35.5) or let n: NSNumber = 35.5
let intified: Int = n.intValue // also doubleValue, boolValue, etc.

Date
Value type used to find out the date and time right now or to store past or future dates
See also Calendar, DateFormatter, DateComponents
If you are displaying a date in your UI, there are localization ramifications, so check these out!

Data
A value type “bag o’ bits”. Used to save/restore/transmit raw data throughout the iOS SDK.

CS193p

Winter 2017

When is an init method needed?
init methods are not so common because properties can have their defaults set using =
Or properties might be Optionals, in which case they start out nil
You can also initialize a property by executing a closure
Or use lazy instantiation
So you only need init when a value can’t be set in any of these ways
You can have as many init methods in a class or struct as you want
Each init will have different arguments, of course

Callers use your init(s) by just using the name of your type and providing the args you want
var brain = CalculatorBrain()
var pendingBinaryOperation = PendingBinaryOperation(function: +, firstOperand: 23)
let textNumber = String(45.2)
let emptyString = String()

Initialization

CS193p

Winter 2017

You get some init methods for “free”
Free init() (i.e. an init with no arguments) given to all base classes.
A base class has no superclass.

If a struct has no initializers, it will get a default one with all properties as arguments

Initialization

struct PendingBinaryOperation {
var function: (Double,Double) -> Double
var firstOperand: Double

init(function: (Double,Double) -> Double, firstOperand: Double) {
// we get this for free!

}
}

// use of this free initializer somewhere else in our code
let pbo = PendingBinaryOperation(function: f, firstOperand: accumulator)

CS193p

Winter 2017

What can you do inside an init?
You can set any property’s value, even those that already had default values
Constant properties (i.e. properties declared with let) can be set
You can call other init methods in your own class or struct using self.init(<args>)
In a class, you can of course also call super.init(<args>)
But there are some rules for calling inits from other inits in a class …

Initialization

CS193p

Winter 2017

What are you required to do inside init?
By the time any init is done, all properties must have values (optionals can have the value nil)
There are two types of inits in a class: convenience and designated (i.e. not convenience)
A designated init must (and can only) call a designated init that is in its immediate superclass
You must initialize all properties introduced by your class before calling a superclass’s init
You must call a superclass’s init before you assign a value to an inherited property
A convenience init must (and can only) call an init in its own class
A convenience init must call that init before it can set any property values
The calling of other inits must be complete before you can access properties or invoke methods
Whew!

Initialization

CS193p

Winter 2017

Inheriting init
If you do not implement any designated inits, you’ll inherit all of your superclass’s designateds
If you override all of your superclass’s designated inits, you’ll inherit all its convenience inits
If you implement no inits, you’ll inherit all of your superclass’s inits
Any init inherited by these rules qualifies to satisfy any of the rules on the previous slide

Required init
A class can mark one or more of its init methods as required
Any subclass must implement said init methods (though they can be inherited per above rules)

Initialization

CS193p

Winter 2017

Failable init
If an init is declared with a ? after the word init, it returns an Optional
init?(arg1: Type1, …) {

// might return nil in here (which means the init failed)
}

Example …
let image = UIImage(named: “foo”) // image is an Optional UIImage (i.e. UIImage?)
Usually we would use if-let for these cases …
if let image = UIImage(named: “foo”) {

// image was successfully created
} else {

// couldn’t create the image
}

Initialization

CS193p

Winter 2017

Any & AnyObject are special types
These types used to be commonly used for compatibility with old Objective-C APIs
But not so much anymore in iOS 10 since those old Objective-C APIs have been updated
Variables of type Any can hold something of any type (AnyObject holds classes only).
Swift is a strongly typed language, though, so you can’t invoke a method on an Any.
You have to convert it into a concrete type first.
One of the beauties of Swift is its strong typing, so generally you want to avoid Any.

Any & AnyObject

CS193p

Winter 2017

Where will you see it in iOS?
Sometimes (rarely) it will be an argument to a function that can take different sorts of things.
Here’s a UIViewController method that includes a sender (which can be of any type).
func prepare(for segue: UIStoryboardSegue, sender: Any?)
The sender is the thing that caused this “segue” (i.e., a move to another MVC) to occur.
The sender might be a UIButton or a UITableViewCell or some custom thing in your code.
It’s an Optional because it’s okay for a segue to happen without a sender being specified.

Where else will you see it?
It could be used to contain a array of things with different types (e.g. [AnyObject]).
But in Swift we’d almost certainly use an Array of an enum instead (like in CalculatorBrain).
So we’d only do this to be backwards-compatible with some Objective-C API.

You could also use it to return an object that you don’t want the caller to know the type of.
var cookie: Any

Any & AnyObject

CS193p

Winter 2017

How do we use a variable of type Any?
We can’t usually use it directly (since we don’t know what type it really is)
Instead, we must convert it to another, known type

Conversion is done with the as? keyword in Swift
This conversion might not be possible, so the conversion generates an Optional
You can also check to see if something can be converted with the is keyword (true/false)

We almost always use as? it with if let …

let unknown: Any = … // we can’t send unknown a message because it’s “typeless”
if let foo = unknown as? MyType {

// foo is of type MyType in here
// so we can invoke MyType methods or access MyType vars in foo
// if unknown was not of type MyType, then we’ll never get here

}

Any & AnyObject

CS193p

Winter 2017

By the way, casting with as? is not just for Any & AnyObject
You can cast any type with as? into any other type that makes sense.
Mostly this would be casting an object from one of its superclasses down to a subclass.
But it could also be used to cast any type to a protocol it implements (more on this later).

Example of “downcasting” from a superclass down to a subclass …
let vc: UIViewController = CalculatorViewController()
The type of vc is UIViewController (because we explicitly typed it to be).
And the assignment is legal because a CalculatorViewController is a UIViewController.
But we can’t say, for example, vc.displayValue, since vc is typed as a UIViewController.

However, if we cast vc to be a CalculatorViewController, then we can use it …
if let calcVC = vc as? CalculatorViewController {

calcVC.displayValue = 3.1415 // this is okay
}

Casting

CS193p

Winter 2017

UserDefaults
A very lightweight and limited database
UserDefaults is essentially a very tiny database that persists between launchings of your app.
Great for things like “settings” and such. Do not use it for anything big!

What can you store there?
You are limited in what you can store in UserDefaults: it only stores Property List data.
A Property List is any combo of Array, Dictionary, String, Date, Data or a number (Int, etc.).
This is an old Objective-C API with no type that represents all those, so this API uses Any.
If this were a new, Swift-style API, it would almost certainly not use Any.
(Likely there would be a protocol or some such that those types would implement.)

What does the API look like?
It’s “core” functionality is simple. It just stores and retrieves Property Lists by key …
func set(Any?, forKey: String) // the Any has to be a Property List (or crash)
func object(forKey: String) -> Any? // the Any is guaranteed to be a Property List

CS193p

Winter 2017

UserDefaults
Reading and Writing

You don’t usually create one of these databases with UserDefaults().
Instead, you use the static (type) var called standard …
let defaults = UserDefaults.standard

Setting a value in the database is easy since the set method takes an Any?.
defaults.set(3.1415, forKey: “pi”) // 3.1415 is a Double which is a Property List type
defaults.set([1,2,3,4,5], forKey: “My Array”) // Array and Int are both Property Lists
defaults.set(nil, forKey: “Some Setting”) // removes any data at that key
You can pass anything as the first argument as long as it’s a combo of Property List types.

UserDefaults also has convenience API for getting many of the Property List types.
func double(forKey: String) -> Double
func array(forKey: String) -> [Any]? // returns nil if non-Array at that key
func dictionary(forKey: String) -> [String:Any]? // note that keys in return are Strings
The Any in the returned values will, of course, be a Property List type.

CS193p

Winter 2017

UserDefaults
Saving the database

Your changes will be occasionally autosaved.
But you can force them to be saved at any time with synchronize …
if !defaults.synchronize() { // failed! but not clear what you can do about it }
(it’s not “free” to synchronize, but it’s not that expensive either)

CS193p

Winter 2017

Assertions
Debugging Aid

Intentionally crash your program if some condition is not true (and give a message)
assert(() -> Bool, “message”)
The function argument is an “autoclosure” however, so you don’t need the { }

e.g. assert(validation() != nil, “the validation function returned nil”)
Will crash if validation() returns nil (because we are asserting that validation() does not)
The validation() != nil part could be any code you want

When building for release (to the AppStore or whatever), asserts are ignored completely

